

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics B (4MB0) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042102
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt -answer which rounds to

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eq algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Marks
1	Any one of $3p-6=-12$, $-9-8=r$, $-3q-12=-24$ (o.e.)	M1
	Note: Nothing, as yet, for $pq-9=r$	
	p = -2, $q = 4$, $r = -17$	A1.A1.A1
	Note: The first A mark is for the value of p , the second for the value of q .	[4]
2	$\frac{x^2 - 11x + 24}{x + 5} \times \frac{2x^2 + 9x - 5}{x - 3}$	M1
	Attempt at factorising a quadratic	M1
	Note: For method, the two bracketed terms, when multiplied out, must give at least two of the three terms from the trinomial quadratic.	
	(x-8)(x-3) (2x-1)(x+5)	A1
		A1
	$(x-8)(2x-1)$ or $2x^2-17x+8$	A1
	Note: If extra factors appear, do not penalise but apply the scheme as stated.	
	Isw Accept (o.e.) i.e. $2(x-8)(x-0.5)$	[5]
3	(a) $2 \times 1.5 \times 0.5 \times 1000000$ (o.e.)	M1
	1500000 (o.e.)	A1
	SC: Allow (M1)(A0) for 1.5 m ³ (as long as units given & this is their final answer to part (a). An incorrect conversion to cm earns no marks here.)	
	(b) $\frac{"1500000"}{12500}$ (M1) 12500×60 (750000)	M1
	" $\frac{1500000}{12500}$ " $\div 60$ (M1) $\frac{"1500000"}{"750000"}$	M1 dep
	2 hours	A1
		[5]

4	(a) 11, 16, 26, 7	B1, B1, B1, B1
	Note: Order of B marks is important If the diagram is not marked in anyway, allow acceptable answers, provided the correct sets are identified.	
	(b) "7"+"11" (18) or 60 – "16" – "26"	B1 ft
	Note: Ignore notation (i.e. {})	[5]
5	(a) one term correctly differentiated	M1
	$1 + \frac{4}{x^2} \text{ (o.e.)}$ Note: Do not isw here	A1
	(b) " $1 + \frac{4}{x^2}$ " = 17 Note: ft from their answer to part (a)	M1
	$16x^2 = 4$ OR $x^2 = \frac{1}{4}$ OR $4x^2 = 1$ (o.e.)	M1 dep
	Note : This M (dep) mark is for re-arranging their equation, removing any denominators or negative indices. The original equation however must have a negative index in it.	
	(0.5, -7.5) Notes: Accept $x = 0.5$, $y = -7.5$ Missing bracket scores, at most, (A1)(A0) i.e. 5, -7.5 scores (A0)(A0) Extra coordinate(s) loses some mark(s), at most (A1)(A0)	A1. A1 [6]

6	(a) each correct section of journey	B1,B1ft,B1ft
	Note: 2 nd B1ft is for a correct horizontal line, of the correct length drawn from the point of the end of the 1 st line segment 3 rd B1 ft is for their line, starting where their horizontal line finishes and terminates at Nevers at 11:45	
	(b) 11:45 – "10:09" (96 mins)	M1
	Note: For method, the mark is awarded for 11:45 – their start time from Autun	
	Accept $1\frac{3}{5}$ hours (o.e.) but not 1.36 (hrs)	
	70 km/h	A1
	(c) one straight line, correct starting point	B1
	Correct finishing point	B1 ft
	Note: For ft, must finish at Beaune, 2 hours after leaving Nevers	
	SC: (B1)(B0) for the correct 'reverse' journey	
	(d) (i) 10:33 (±2 min)	B1 ft
	(ii) 28 km (±1 km)	B1 ft
	Note: Do not accept 0	[9]

7 (a) $\frac{4}{11}$; $\frac{6}{10}$, $\frac{4}{10}$; $\frac{7}{10}$, $\frac{3}{10}$	B1,B1,B1
(b) (i) $\frac{7}{11} \times "\frac{4}{10}"$	M1
$\frac{28}{110}$ (o.e.) $(\frac{14}{55}, 0.255, 25.5\%)$	A1
(ii) At least two of $\frac{7}{11} \times "\frac{4}{10}"$, $"\frac{4}{11}" \times "\frac{7}{10}"$, $"\frac{4}{11}" \times "\frac{3}{10}"$ added together	M1
All 3 correct products from c's diagram added together	M1 dep
Alternative for (b)(ii) M2	-
$1 - \frac{7}{11} \times "\frac{6}{10}"$	M2
$\frac{68}{110} (\frac{34}{55}, 0.618, 61.8\%)$	A1
(c) " $\frac{4}{11}$ "×" $\frac{3}{10}$ "+ $\frac{7}{11}$ ×" $\frac{4}{10}$ "	M1
$\frac{\frac{4}{11} \times \frac{3}{10}}{\frac{4}{11} \times \frac{3}{10} + \frac{7}{11} \times \frac{4}{10}} \qquad \left(\frac{6/55}{20/55}\right)$	M1 dep
=12/40 = 0.3 (correct conclusion) *	A1 cso
Note: A candidate who uses with replacement gains, at most, the method marks within the question.	[11]

8		60		
, o	(a)	$\frac{60}{x}$	B1	
		60		
	(b)	$\frac{60}{x-27}$	B1	
	(c)	" $\frac{60}{x-27}$ "-" $\frac{60}{x}$ "= 2 (o.e.)	B1	
	(d) one si	Removing denominators and brackets from their equation (allow gn slip)	M1	
		Must be two denominators removed which both involve an ssion in x .		
		$60x - 60x + 1620 = 2x^2 - 54x + 1620$ (o.e.)	A1	
		completely correct working	A1	
	(e)	Attempt to solve quadratic	M1	
	Note:	Either Attempt to factorise (see Question 2)		
		Or correct substitution into a correct formula		
		Or completing the square as far as:		
		$\left(x - \frac{27}{2}\right)^2 - \left(\frac{27}{2}\right)^2 = 810$		
		$(x-45)(x+18) \ (=0)$	A1	
		x = 45	A1	
	Note:	Ignore $x = -18$ as a solution		
	(f)	10.80 "45"-27	M1	
	Note:	"45" must be positive		
		Accept $\frac{60}{10/3} = \frac{10.80}{x}$ (o.e.) for method		
		(£) 0.60 or 60 (pence)	A1	
	Note:	Accept £ 0.6 with the '£' sign		[11]

(a) $AC^2 = 12^2 + 9^2 - 2 \times 12 \times 9 \times \cos 100$ $AC^2 = 225 + 37.5$ $16.2 \text{ m } (16.2020)$ (b) $\frac{9}{\sin CAB} = \frac{\text{"16.2"}}{\sin 100}$ $\sin CAB = \frac{9 \times \sin 100}{\text{"16.2"}}$ $\cos \angle BAC = \frac{12^2 + \text{"16.2"}^2 - 9^2}{2 \times 12 \times \text{"16.2"}}$ $33.2^{\circ} (33.164492)$ (c) $\angle BDA = 180 - 50 - \text{"33.2"} (96.8^{\circ})$ OR $\angle BCD = 180 - 100 - \text{"33.2"} (46.8^{\circ})$ OR $\angle BDC = 50 + \text{"33.2"} (83.2^{\circ})$ $BD = \frac{12 \times \sin^{\circ} 33.2^{\circ}}{\sin^{\circ} 96.8^{\circ}}$ $BD = \frac{12 \times \sin^{\circ} 33.2^{\circ}}{\sin^{\circ} 96.8^{\circ}}$ $BD = \frac{12 \times \sin^{\circ} 33.2^{\circ}}{\sin^{\circ} 96.8^{\circ}}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin^{\circ} 46.8^{\circ} M1 ind M1 dep M1 dep M2 M1 dep M3 dep M1 dep M3 dep M4 dep M5 dep M6 dep A1 dep M7 dep M8 dep M8 dep M8 dep M9 dep M9 dep M9 dep M9 dep M1 dep$	9	Penalise incorrect rounding once only in the question, the first time it	
(a) $AC^2 = 12^2 + 9^2 - 2 \times 12 \times 9 \times \cos 100$ $AC^2 = 225 + 37.5$ $16.2 \text{ m } (16.2020)$ (b) $\frac{9}{\sin CAB} = \frac{\text{"16.2"}}{\sin 100}$ $\sin CAB = \frac{9 \times \sin 100}{\text{"16.2"}}$ $33.2^{\circ} (33.164492)$ (c) $\angle BDA = 180 - 50 - \text{"33.2"} (96.8^{\circ})$ OR $\angle BCD = 180 - 100 - \text{"33.2"} (46.8^{\circ})$ OR $\angle BDC = 50 + \text{"33.2"} (83.2^{\circ})$ $BD = \frac{12 \times \sin^{\circ} 33.2^{\circ}}{\sin^{\circ} 96.8^{\circ}}$ $BD = \frac{12 \times \sin^{\circ} 33.2^{\circ}}{\sin^{\circ} 96.8^{\circ}}$ $DC = \frac{9 \times \sin 50}{\sin^{\circ} 83.2^{\circ}}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.64"} \times \sin^{\circ} 46.8^{\circ} All ind Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin^{\circ} 46.8^{\circ} All ind Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50 Area \triangle BDC = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin^{\circ} 46.8^{\circ} All ind$		occurs	M1
$AC^2 = 225 + 37.5$ $16.2 \text{ m } (16.2020)$ $(b) \frac{9}{\sin CAB} = \frac{"16.2"}{\sin 100}$ $\sin CAB = \frac{9 \times \sin 100}{"16.2"}$ $33.2^{\circ} (33.164492)$ $(c) \angle BDA = 180 - 50 - "33.2" (96.8^{\circ})$ OR $\angle BDC = 180 - 100 - "33.2" (46.8^{\circ})$ OR $\angle BDC = 50 + "33.2" (83.2^{\circ})$ $BD = \frac{12 \times \sin^{\circ} 33.2"}{\sin^{\circ} 96.8"}$ $BD = 6.61 \rightarrow 6.62 (awrt)$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin^{\circ} 46.8"$ $A1$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin^{\circ} 46.8"$ $A1$ $A1$ $A1$ $A2$ $A2$ $A2$ $A2$ $A3$ $A3$ $A4$ $A4$ $A4$ $A5$ $A6$ $A6$ $A6$ $A6$ $A7$ $A7$ $A7$ $A8$ $A8$ $A7$ $A8$ $A8$ $A8$ $A8$ $A8$ $A8$ $A8$ $A8$		(a) $AC^2 = 12^2 + 9^2 - 2 \times 12 \times 9 \times \cos 100$	
16.2 m (16.2020) (b) $\frac{9}{\sin CAB} = \frac{\text{"16.2"}}{\sin 100}$ $9^2 = 12^2 + \text{"16.2"}^2 - 2 \times 12 \times \text{"16.2"} \times \cos \angle BAC$ $\sin CAB = \frac{9 \times \sin 100}{\text{"16.2"}}$ $\cos \angle BAC = \frac{12^2 + \text{"16.2"}^2 - 9^2}{2 \times 12 \times \text{"16.2"}}$ M1 dep 33.2° (33.164492) (c) $\angle BDA = 180 - 50 - \text{"33.2"}$ (96.8°) OR $\angle BCD = 180 - 100 - \text{"33.2"}$ (46.8°) OR $\angle BDC = 50 + \text{"33.2"}$ (83.2°) $\frac{BD}{\sin^{"33.2"}} = \frac{12}{\sin^{"96.8"}}$ $BD = \frac{12 \times \sin^{"33.2"}}{\sin^{"96.8"}}$ $BD = \frac{12 \times \sin^{"33.2"}}{\sin^{"96.8"}}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ Area $\triangle BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50$ Area $\triangle BDC = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin^{"46.8"}$ Note: Apply an equivalent scheme to:		$AC^2 - 225 \pm 37.5$	M1 dep
(b) $\frac{9}{\sin CAB} = \frac{\text{"16.2"}}{\sin 100}$ $9^2 = 12^2 + \text{"16.2"}^2 - 2 \times 12 \times \text{"16.2"} \times \cos \angle BAC$ M1 $\sin CAB = \frac{9 \times \sin 100}{\text{"16.2"}}$ $\cos \angle BAC = \frac{12^2 + \text{"16.2"}^2 - 9^2}{2 \times 12 \times \text{"16.2"}}$ M1 dep A1 $\cos \angle BAC = 180 - 50 - \text{"33.2"}$ (96.8°) B1 ft OR $\angle BCD = 180 - 100 - \text{"33.2"}$ (46.8°) OR $\angle BDC = 50 + \text{"33.2"}$ (83.2°) $\frac{BD}{\sin^{\text{"33.2"}}} = \frac{12}{\sin^{\text{"96.8"}}}$ $\frac{DC}{\sin 50} = \frac{9}{\sin^{\text{"83.2"}}}$ M1 $\frac{DC}{\sin^{\text{"83.2"}}}$ M1 $\frac{DC}{\sin^{\text{"83.2"}}}$ $\frac{9 \times \sin 50}{\sin^{\text{"83.2"}}}$ M1 dep $\frac{BD}{A} = \frac{12 \times \sin^{\text{"33.2"}}}{\sin^{\text{"96.8"}}}$ $\frac{DC}{A} = \frac{9 \times \sin 50}{\sin^{\text{"83.2"}}}$ M1 $\frac{A}{A} = \frac{A}{A} = \frac{B}{A} = \frac{12}{2} \times 9 \times \text{"6.62"} \times \sin 50}$ Area $\frac{ABDC}{A} = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin^{\text{"33.2"}}$ M1 ind Note: Apply an equivalent scheme to:			A1
$ sin CAB = \frac{9 \times sin 100}{"16.2"} cos \angle BAC = \frac{12^2 + "16.2"^2 - 9^2}{2 \times 12 \times "16.2"} M1 dep $ $ 33.2^{\circ} (33.164492) 33.2^{\circ} (33.164492) $ (c) $\angle BDA = 180 - 50 - "33.2" (96.8^{\circ})$ $ OR $ $ \angle BCD = 180 - 100 - "33.2" (46.8^{\circ}) $ OR $ \angle BDC = 50 + "33.2" (83.2^{\circ}) $ $ \frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} \frac{DC}{\sin 50} = \frac{9}{\sin"83.2"} $ M1 $ BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} DC = \frac{9 \times \sin 50}{\sin"83.2"} $ M1 dep $ BD = 6.61 \rightarrow 6.62 (awrt) DC = 6.94 (6.94756) (awrt) $ Area $\triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ Area $\triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ Note: Apply an equivalent scheme to:			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(b) $\frac{9}{\sin CAB} = \frac{"16.2"}{\sin 100}$ $9^2 = 12^2 + "16.2"^2 - 2 \times 12 \times "16.2" \times \cos \angle BAC$	M1
33.2° (33.164492) (c) $\angle BDA = 180 - 50 - "33.2"$ (96.8°) OR $\angle BCD = 180 - 100 - "33.2"$ (46.8°) OR $\angle BDC = 50 + "33.2"$ (83.2°) $\frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"}$ $BD = \frac{12 \times \sin"33.2"}{\sin"96.8"}$ $BD = \frac{12 \times \sin"33.2"}{\sin"96.8"}$ $BD = 6.61 \rightarrow 6.62$ (awrt) Area $\triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ Area $\triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ Note: Apply an equivalent scheme to:		$\sin CAB = \frac{9 \times \sin 100}{"16.2"} \qquad \cos \angle BAC = \frac{12^2 + "16.2"^2 - 9^2}{2 \times 12 \times "16.2"}$	M1 dep
OR $\angle BCD = 180 - 100 - "33.2" (46.8^{\circ})$ OR $\angle BDC = 50 + "33.2" (83.2^{\circ})$ $\frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} \qquad \frac{DC}{\sin 50} = \frac{9}{\sin"83.2"} \qquad M1$ $BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} \qquad DC = \frac{9 \times \sin 50}{\sin"83.2"} \qquad M1 \text{ dep}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)} \qquad DC = 6.94 (6.94756) (awrt)$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50 \qquad Area \triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ Note: Apply an equivalent scheme to:			A1
OR $\angle BCD = 180 - 100 - "33.2" (46.8^{\circ})$ OR $\angle BDC = 50 + "33.2" (83.2^{\circ})$ $\frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} \qquad \frac{DC}{\sin 50} = \frac{9}{\sin"83.2"} \qquad M1$ $BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} \qquad DC = \frac{9 \times \sin 50}{\sin"83.2"} \qquad M1 \text{ dep}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)} \qquad DC = 6.94 (6.94756) (awrt)$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50 \qquad Area \triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ Note: Apply an equivalent scheme to:		(c) $\angle BDA = 180 - 50 - "33.2" (96.8^\circ)$	B1 ft
OR $ \angle BDC = 50 + "33.2" (83.2^{\circ}) $ $ \frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} $ $ BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} $ $ BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} $ $ BD = 6.61 \rightarrow 6.62 \text{ (awrt)} $ $ DC = \frac{9 \times \sin 50}{\sin"83.2"} $ $ DC = \frac{9 \times \sin 50}{\sin"83.2"} $ A1 $ DC = 6.94 (6.94756) \text{ (awrt)} $ $ Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50 $ Area \Delta BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8" Note: Apply an equivalent scheme to:			
$ \frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} \qquad \frac{DC}{\sin 50} = \frac{9}{\sin"83.2"} \qquad M1 $ $ BD = \frac{12 \times \sin"33.2"}{\sin"96.8"} \qquad DC = \frac{9 \times \sin 50}{\sin"83.2"} \qquad M1 \text{ dep} $ $ BD = 6.61 \rightarrow 6.62 \text{ (awrt)} \qquad DC = 6.94 \text{ (6.94756) (awrt)} $ $ Area \Delta BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50 \qquad \text{Area } \Delta BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8" $ Note: Apply an equivalent scheme to:		$\angle BCD = 180 - 100 - "33.2" (46.8^{\circ})$	
$\frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"}$ $BD = \frac{12 \times \sin"33.2"}{\sin"96.8"}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \triangle BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ Note: Apply an equivalent scheme to:		OR	
$BD = \frac{12 \times \sin"33.2"}{\sin"96.8"}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ $Note: Apply an equivalent scheme to:$		$\angle BDC = 50 + "33.2" (83.2^{\circ})$	
$BD = {\sin"96.8"}$ $BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.62" \times \sin 50$ $Area \Delta BDC = \frac{1}{2} \times 9 \times "6.94" \times \sin"46.8"$ $Note: Apply an equivalent scheme to:$		$\frac{BD}{\sin"33.2"} = \frac{12}{\sin"96.8"} \qquad \frac{DC}{\sin 50} = \frac{9}{\sin"83.2"}$	M1
$BD = 6.61 \rightarrow 6.62 \text{ (awrt)}$ $DC = 6.94 \text{ (6.94756) (awrt)}$ $Area \Delta BDC = \frac{1}{2} \times 9 \times \text{"6.62"} \times \sin 50$ $Area \Delta BDC = \frac{1}{2} \times 9 \times \text{"6.94"} \times \sin \text{"46.8"}$ $Note: Apply an equivalent scheme to:$		$BD = \frac{12 \times \sin"33.2"}{\sin"96.8"}$ $DC = \frac{9 \times \sin 50}{\sin"83.2"}$	M1 dep
Area $\triangle BDC = \frac{1}{2} \times 9 \times 6.62 \times \sin 50$ Area $\triangle BDC = \frac{1}{2} \times 9 \times 6.94 \times \sin^2 46.8 $			A1
1		Area $\triangle BDC = \frac{1}{2} \times 9 \times \text{"}6.62 \text{"} \times \sin 50$ Area $\triangle BDC = \frac{1}{2} \times 9 \times \text{"}6.94 \text{"} \times \sin \text{"}46.8 \text{"}$	M1 ind
Fig. 4D 0.00 (0.05034) 1 15 4 4 4 DAD 1.12 v.10 20 H visual 22 2 H		Note: Apply an equivalent scheme to:	-
Finding $AD = 9.26$ (9.25834) leading to Area $\Delta BAD = -\times 12 \times 9.26^{\circ} \times \sin^{\circ} 33.2^{\circ}$		Finding $AD = 9.26$ (9.25834) leading to Area $\triangle BAD = \frac{1}{2} \times 12 \times "9.26" \times \sin"33.2"$	
Note: Applying the formula $\frac{1}{2}bc\sin A$ for the area of any triangle earns an		Note: Applying the formula $\frac{1}{2}bc\sin A$ for the area of any triangle earns an	
independent method mark		'	
22.8 (m ²)		22.8 (m ²)	A1
[12			[12]

10	(a) (i)	$\frac{1}{3}$ a (ii) $\frac{3}{4}$ b (iii) " $\frac{1}{3}$ a "-" $\frac{3}{4}$ b " (iv) a - b	B1, B1 B1ft,B1
	(b)	$\overrightarrow{AP} = \lambda ("\frac{1}{3}\mathbf{a}" - "\frac{3}{4}\mathbf{b}")$	M1
		$\overrightarrow{XP} = \frac{3}{4}\mathbf{b}'' + \lambda(\frac{1}{3}\mathbf{a}'' - \frac{3}{4}\mathbf{b}'')$	M1 dep
		Correct conclusion from correct working	A1
	(c)	$-\mathbf{a} + \mu("\mathbf{a} - \mathbf{b}")$ (o.e.)	B1ft
	(d)	comparing one of c's coefficients of their components	M1
	Note:	Do not penalise method if the vector(s) are left in the comparison	
		A correct equation in one parameter from c's equations	M1
	Note:	$\frac{1}{3}\lambda = \mu - 1, \frac{3}{4}(\lambda - 1) = \mu$	
		$\mu = \frac{12}{5}, \lambda = \frac{21}{5}$ (o.e.)	A1, A1
	(e)	2 (cm)	B1
	(f)	$\frac{3}{4}y$ seen	B1
	Note:	Accept $\frac{3}{4} \mathbf{b} $ for $\frac{3}{4}y$ for (B1)	
		$y \times \frac{3}{4} y = 6 \times "2"$	M1
	Note:	Must be an equation in y.	A 1
		y = 4	Al
			[16]

11	(a)	$\frac{1}{2} \times 3x \times 4x \text{ (isw)}$	B1
	(b)	$(AC^2 =) (3x)^2 + (4x)^2$	M1
		3x + 4x + "5x"	A1 ft
	Note:	Do not accept $\sqrt{25x^2}$	
	(c)	60-"12 <i>x</i> "	M1
		$y = \frac{60 - 12x}{6} \tag{10 - 2x}$	A1
	(d)	area of rectangle = $2 \times ("10-2x")("10-2x")$	M1
		Total area = " $\frac{1}{2} \times 3x \times 4x$ "+ 2×("10 – 2x")("10 – 2x")	M1 dep
		correct conclusion	A1
	(e)	134, 86	B1,B1
	(f)	-1 mark for straight line segments each of their points missed each missed segment each of their points not plotted each of their points incorrectly plotted tramlines very poor curve	В3
	Notes:	ft from their table values Accuracy: ± 1 s.s. If a point is not plotted, it can be inferred from their curve passing through (within tolerance) the required point.	
	(g)	line drawn on graph at $A = 120$	M1
	Note:	The line may be implied from their value(s) of x or simply from two points marked at the intersection of their curve and $A = 120$	M1
		x = 4.4/4.5 (awrt)	A1
	Note:	Ignore the second answer	
		Accept answer in range 116 – 122 (must be an integer)	

Alternative to part (g)	A1
attempt to solve $14x^2 - 80x + 80 (= 0)$	M1
Note: Either correct substitution into a correct formula	1V1 1
Or Attempt to factorise (see Question 2)	
Or completing the square as far as:	
$\left(x - \frac{80}{28}\right)^2 - \left(\frac{80}{28}\right)^2 = \frac{-80}{14}$	
x=4.4 (or better)	
answer 117	A1
	A1
	[16]

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom